
Alan IDE Reference Guide
by Robert DeFord

Version: Final 1.0

Uncopyrighted

1. About This Guide

This guide is written for Alan IDE version 0.1.5 running on the Windows 10
operating system.

This guide covers only the Alan IDE functionality that the author has learned over
the course of creating several Alan games with the Alan IDE. As such, it should
not be considered to be a complete reference for the Alan IDE.

2. Installing the Alan IDE

The procedure that follows assumes that you are setting up your Alan
development system on a Windows 10 computer with the intention of using the
Alan IDE to create Alan games.

2.1. Verify your Java Installation

You must have Java installed on your computer in order to use the Alan IDE.
Perhaps the easiest way to verify that you have Java is to open the Windows
Control Panel and select View by/small icons.

• If you see the Java Control Panel icon, then you are probably good to go as
long as you used the default settings during the Java installation process.

• If you don’t see the Java icon, you can get Java from https://www.java.com/
en/. Just click on the Free Java Download button and follow the instructions.
It’s a good idea to stick to the defaults during the installation process.

According to the Alan web site, a Java runtime environment
1.5 (5.0) or greater is supposed to work. However, for
security reasons, it is a good idea update your Java to
the latest version. For example, you can double-click the

1

https://www.java.com/en/
https://www.java.com/en/

Alan IDE Reference Guide

Java icon to get the Java control panel, then click on the
Update tab to get to the update screen, and then use the
Update Now button. As a point of reference, the author’s
Java version is 1.8.0_161 as of this writing.

2.2. Get the right compiler

The Alan IDE uses the command line version of the Alan compliler, so you must
download the command line Alan SDK even if you’ve already downloaded and
are using the Alan GUI SDK.

1. Download the latest Alan SDK for Windows (command line) package from
the Alan website: https://www.alanif.se/download-alan-v3/latest-releases.

2. Unzpip the command line SDK into a directory of your choice. For example,
you could create a directory on your desktop, name it Alan, and then unzip
the SDK into it.

2.3. Install the Alan IDE

You will have to install the Alan IDE manually.

1. Go to https://www.alanif.se/download-alan-v3/alanide and download the latest
version of the Alan IDE.

2. Unzip it into the directory of your choice. For example, you could use the same
directory as the one you put the Alan command line SDK in.

3. Open your chosen directory to see the list of files in it.

4. Create a shortcut to the AlanIDE.exe executable file in a convenient place,
or simply pin it to the Taskbar.

Over the course of writing this guide, the author had to
change the compatibility mode for the Alan IDE executable
to run in Windows 7 compatibiity mode in order to restore
certain functionality that seemed to be lost after a Windows
10 update. You are advised to do the same:

1. Right-click on AlanIDE.exe, and select Properties from
the dropdown menu.

2

https://www.alanif.se/download-alan-v3/latest-releases
https://www.alanif.se/download-alan-v3/alanide

Alan IDE Reference Guide

2. Select the Compatibility tab.

3. Set the Compatibility mode to run the program in
compatibility mode for Windows 7.

4. Click OK.

2.4. Configure the Alan IDE

Before you can use the Alan IDE you must configure it for use with your directory
structure.

1. Launch the Alan IDE and wait for it to do an automatic update. Click the Edit
button on the menu bar to get the drop-down menu.

2. Select Preferences from the drop-down menu to open the Preferences
window.

3. Select Alan in the left column of the window to get the General preferences
settings for Alan IF development screen.

4. Click in the Selected Compiler field to select it.

5. Click the Browse button for that field, navigate to the directory where you put
the Alan command line SDK, and then open that directory.

6. Select alan.exe from the open directory to enter its path into the Selected
Compiler field.

7. Leave the Path to Standard Library field blank.

8. (OPTIONAL) Click the Generate debug information: check box if you wish to
use the Alan compiler outside the IDE workbench to troubleshoot your project.
You probably won’t need to do this, but it won’t hurt to generate the information
in case you do.

9. Click the OK button to close the Preferences window.

2.5. Choose your Interpreter

You must select which Alan Interpreter that you are going to test your game with
while you are using the Alan IDE. You can use any Alan interpreter such as Arun
or Gargoyle, but your best bet is to use the WinArun interpreter. It is easy to
install, always up to date with the latest Alan release, and it looks a lot better than
arun.exe.

3

Alan IDE Reference Guide

• Download the latest WinArun installer from the Alan website. (https://
www.alanif.se/download-alan-v3/interpreters/interpreters-3-0beta5 as of this
writing).

1. Double-click the installer executable,
winarun3_0beta5.win32.x86.setup.exe, as of this writing, to install the
WinArun interpreter.

2. Use the Windows operating system to make WinArun the default
application for running .a3c files so that you can launch an Alan .a3c game
by double-clicking on its filename.

You can do this step using the Windows Control Panel/
Default Programs, or you can right-click on any .a3c file to
get the pop-up menu, and then select the Open With option.

3. Alan IDE Reference Section

Once you have installed and configured the Alan IDE, you can create an Alan
game from start to finish with it. The topics in this section are loosely arranged
in a logical order that more or less reflects the series of steps you will take in
developing your game.

3.1. Alan IDE overview

When you launch the Alan IDE, it displays a workbench, which consists of a main
window with four sub-windows:

4

https://www.alanif.se/download-alan-v3/interpreters/interpreters-3-0beta5
https://www.alanif.se/download-alan-v3/interpreters/interpreters-3-0beta5

Alan IDE Reference Guide

Figure 1. The Alan IDE workbench

• Project Explorer: Displays a list of the projects in the Alan IDE’s workspace.
(This example shows several projects in the IDE’s workspace, but there can
be any number from zero on up.)

• Editor: This is where you write the code for your game. You can open and
work on several different files, each under a separate tab. (The default limit
is 8 tabs.)

• Outline: Displays an outline of the file currently being edited in the Editor.
When you double-click one of the items in the outline, the editor will scroll to
the code for that item.

• Problems This tab lists compiler error messages, if any. When you expand
the list, you will see a textual explanation for each problem. When you double-
click one of the problems, the editor will open the appropriate file and display
the code where the compiler encountered the error.

You can resize the workspace sub-windows. Just use hover
the cursor over a border rule until you get the double-arrow,
then click and drag the border.

3.2. Starting a new game

Starting a new game is a two-step process. First you create a project to work in,
then you create a main file for the new game’s source code.

5

Alan IDE Reference Guide

Create a project for the new game

The Alan IDE keeps all the files for a single game in a special container called a
project. You will need a project for each game that is under development.

1. In the Alan IDE, click on File in the menu bar and select New Wizards/Alan
Project from the pop-up menu to get the Create New Alan Project dialog box.

2. Think of a name for your project and type it in the Project name field.

By default, the location for your project is the Alan IDE
workspace directory. As a general rule, that’s the best
place for it, so leave the Use default location option
selected.

3. Click the OK button to create the project.

The Alan IDE will recompile the workspace, and your new project will show
up as an empty folder over in the Project Explorer sub-window.

Create a main file for the new game

Once you have an empty project to work in, you then create the first source code
file for your new game. This mandatory first file is referred to as the main file for
the game.

1. Over in the Project explorer, right-click on the name of the new project to get
a dropdown menu.

2. If the project is closed, select Open Project from the drop-down menu to open
that project so you can work in it.

3. Click on File in the IDE menu bar, and select New Wizards/Alan Main File
from the drop-down menu to get the Create an Alan Source file dialog box.

4. Put a name for your main file in the File name field. For example, main.alan.

By default, the Container field already has a path to the
selected project in it, which is what you want, so you
can ignore the Browse button.

6

Alan IDE Reference Guide

You can name this primal file with any filename you
wish, but you must use the .alan extension for it. This
extension makes it the main file for you game. In the
case where the source code spans more than one file,
the compiler looks at the main file first and uses the
import statements in that file to compile the complete
game.

5. Click the Finish button to add the file to the open project.

The Alan IDE will do an automatic save and attempt to compile your new game.
Over in the Editor you will see a tab for the main file you just created, and it is
currently open for editing. As you can see, the wizard automatically generated the
first line of code for you:

Start At l.

This line of code defines what is referred to as the start
section for a game. The start section must always be the
last chunk of code in the main file for a game. At a minimum,
the start section must state the first location that the player
sees when the game starts. In this case, this line of code
simply tells the compiler to make the location named l be
the location in the game that the player will start in.

Over in the Project Explorer, you will notice that the .alan
file you just created is listed as a file in your project. Along
with that file, you will notice that the wizard automatically
created a .ifdb file and added it to your project as well. It
contains only the unique IF database identifier code for the
game, and you can safely ignore it while developing your
game.

At this time, your workbench should now look something like this:

7

Alan IDE Reference Guide

Figure 2. A newly created main file

3.3. Finding and fixing compiler errors

Compiler errors are a common type of error that you will get while developing your
games. An example follows that shows an example of the process used to fix a
compiler error, but here is a brief overview of that process to give you an idea of
what is going on ahead of time:

1. Examine the error message’s text to figure out what the compiler is
complaining about and what it thinks might resolve the issue.

2. Modify the offending code statement(s) in the source code.

3. Save the modified file.

The compiler will recompile the edited code and report on any errors it finds.
Hopefully, your modified code will compile without errors.

For example, suppose you just followed the procedure in this guide to create a
new .alan main file for a new game and have not yet written any code of your
own. Over in the editor, where it is displaying the .alan file, you will see that the
compiler is reporting an error down in the Problems sub-window:

Figure 3. Problems sub-window

8

Alan IDE Reference Guide

This report indicates that the compilier found something it could not compile in
the line of code that the New Main Alan File wizard automatically created for you.
You can fix this particular error with the same technique that you can use later on
when you write your own code:

1. Click on the Errors (1 Item) line down in the Problems sub-window to select it.

2. Click on the > that points to the word Errors to expand the list of errors. (In
this case there is only one item on the list.)

As you can see, this error report has several parts:

• 301 E is the compiler’s internal error code.

• Identifier l not defined. is a plain text explanation of the error written from the
compiler’s point of view. In this case, the compiler is telling you that you have
referred to an object named l that is not defined elsewhere in your source code.

• main.alan is the filename of the file where the error occurred. In this case,
since you have only one source code file, it may not seem very useful, but it
will be later on when your source code spans multiple files.

• /My Game is the path to the file. In this example, it is a project folder named
My Game in the IDE workspace.

• line 1 is the line number where the error was found in the indicated file.

Line numbering has not been enabled in the IDE editor in
the examples in this guide.

Since there is only one line of code in this example’s source code, it is pretty easy
to see where the offending line of code is. However, if your source code were to
span a dozen or so files with thousands of lines of code, that would not be the
case.

Fortunately, the Alan IDE provides a simple way to zoom right to the offending
line of code; simply double-click the error message in the Problems sub-window.

In response the Editor will open the appropriate file and scroll to display the
offending line of code.

To fix the error in this example you would proceed as follows:

9

Alan IDE Reference Guide

1. Create a location object somewhere ahead of the Start section in the
main .alan file, and change the L in the offending line to be the name of your
new location object. For example, your code could look something like this:

2. Select File/Save from the Alan IDE main menu.

Any time you Save a file in the Alan IDE, it automatically
compiles the file and updates the error report.

If you have written a lot of code without saving and
recompiling, you can easily get a confusing array of
interdependent errors. Consequently, it is a very good idea
to save your work after each and every chunk of code you
write.

If you have edited multiple files in a project, you should use
File/Save All from the Alan IDE main menu.

3.4. Adding an existing file to a project

You will no doubt need to add an existing file to your project from time to time. For
example, copies of the Standard Library files are usually added to the a project
prior to writing any source code, or you might wish to re-use a source code file
from another game.

1. Navigate to the file’s location on your computer, then right-click on the filename
and select Copy from the drop-down menu.

2. Over in the Project Explorer, click on the destination project’s name to select it.

3. Right-click on the project name to get the drop-down menu, and select Paste.

The file should appear in the list of files for the destination project.

10

Alan IDE Reference Guide

4. In the Project Explorer, double-click the main .alan file in the open project to
open it in the editor for editing.

5. In the Editor, on a line by itself, somewhere prior the Start section, enclose this
statement in single quotes followed by a period: IMPORT <filename>, where
<filename> is the name of the file you copied into the project. For example:

When you Save the main file, the compiler will now include the code in that file
when it creates the executable file for the game.

3.5. Creating a new file for a project

While it’s possible to create a large game with just the main.alan file, trying to work
with just one massive file can get cumbersome. It’s a good idea to divide your
source code into multiple files with meaningful names for each file. Fortunately,
the Alan IDE makes the process quick and easy:

1. In the Project Explorer, right-click on the project name to get the drop-down
menu, and then select New/File to get the New File dialog box.

2. Click in the File Name field, then type a name for your new file and end with
the .i filename extension. This extension designates the file as an import file.

Every file in a project that contains source code you
intend to be part of your game, must end with the .i
filename extension. Other files, such as .txt files, can
be in the project and used for notes, reference material,
and so forth, but they won’t be complied into the game.

3. Click the Finish button. The file will appear in the Project Explorer as a new
file in the project.

4. In the Project Explorer, double-click the main .alan file to open it in the editor
for editing.

5. On a line by itself, somewhere prior the Start section, enclose this statement
in single quotes, IMPORT <filename>, and end the line with a period.

For example, with a file named L sand_cave.i you would do this:

11

Alan IDE Reference Guide

From now on, when you Save the main file, the compiler will compile the code
in this file along with the other files in the project as it creates the executable file
for the game.

There is no limit to the number of files you can have in a
project. For example, at a minimum, this author has a file
for each location in the game, a file for the custom verbs, a
file for each of the game’s infrastructure elements, and all
the files in the Standard Library.

3.6. Closing an open project

You don’t have to close a project between work sessions, and it is entirely
possible to have multiple open projects in the Alan IDE workspace. However, it is
sometimes a good idea to close an open project. For example, this author likes
to keep just the current, active project open between work sessions because the
editor could well have multiple tabs open on files from multiple open projects,
which means that you can easily edit a file from the wrong project. (It has
happened.)

Over in the Project Explorer, right-click a project, and select Close Project
from the drop-down menu to close the project. In response, the toggle button
immediately to the left of the project name will disappear.

3.7. Opening a closed project

When you sit down at the computer to continuing working on a game with the Alan
IDE, you will typically have to open an existing project that you closed when you
ended a previous work session.

• In the Project Explorer, right-click a project and select Open Project from the
drop-down menu to open the project.

In response, you will see a toggle button immediately to the left of the project
name. That toggle tells you that the project is open.

12

Alan IDE Reference Guide

3.8. Listing the files in a project

Over in the Project Explorer, click on the toggle button immediately to the left of
an open project to expand the project and display a list of the files in that project.

3.9. Opening a project file for editing

Over in the Project Explorer, double-click a file in an open project to display the
contents of that file in the Editor under its own tab.

3.10. Closing an open file

In the Editor, right-click on the tab for a file to get the dropdown menu and select
one of the Close options. Or, you can simply click on the close button on the tab.

3.11. Saving and Compiling your source code

On the IDE menu bar, click on File, and select either Save or Save All. The IDE
will save your edits in the open project file (or files) and compile the game to create
(or overwrite) an .a3c game file, which then appears in the Project Explorer.

Get into the habit of using File/Save All to save the changes
in all the open files in a project instead of File/Save to save
just the one file. It will save you time and trouble in the long
run.

3.12. Testing your game

Just because your game compiles without any compiler errors, does not mean
that the game will do what you want for the player, or is bug free. Most authors do
incremental testing throughout the development process instead of waiting until
the game is complete.

1. Save and compile the project.

2. Over in the Project Explorer, double-click the .a3c game file to launch the
game with the interpreter.

3. Play-test the game as if you were the player, taking notes as you go if you
see any issues.

13

Alan IDE Reference Guide

4. Close the interpreter, then go back into the Alan IDE and fix the issues by
editing your source code files and saving the modified files to compile them.

5. Over in the Project Explorer, double-click the .a3c game file to launch the
game with the interpreter.

6. Play-test the game again as if you were the player, taking notes as you go if
you find any issues that were not resolved by your code changes.

Repeat these steps over and over again throughout the development of your
game.

You can write a special command in your game’s source
code that will allow you to set up the conditions required
to test a specific chunk of code without having to play the
game from the start.

3.13. Backing up your project

It is a good idea to back up your project periodically during the development
process. For example, at a minimum, this author does a back up at the completion
of each day’s work, and often after reaching any significant plateau during a work
session.

1. Create a backup directory somewhere on your computer system. For
example, this author creates a backup directory in an external USB drive.

2. Back in the Alan IDE, in the Project Explorer, click on the project name to
select it.

3. Right-click on the project name to get the dropdown menu, and select Export
to get the Export dialog box.

4. Click the Next button to get the File System dialog box.

Your author has two computers running the IDE, and
they do not behave the same for this procedure. You
may have to clik on the General folder in the list,
then click the toggle to get a drop-down list, then
double_click File System to get the File System screen.
The project name should be selected.

14

Alan IDE Reference Guide

5. Put a check mark next to the name of the project in the list of open projects
to select it.

6. Click the Browse button, then navigate to the backup directory you created
earlier.

7. Click on the name for the backup directory to select it.

8. Click the OK button to put that directory name into the To Directory field. (Leave
the default options as they are.)

9. Click the Finish button.

Now that you’ve created the backup file, go outside the Alan IDE and use the file
explorer to navigate to the backup directory and open it to make sure that a copy
of your project is now in the list of files in the backup directory.

Edit the filename in your backup directory to add some
sort of unique identifier. For example, add a unique version
number to the filename of each backup. These identifiers
will keep you from overwriting an existing backup the
next time you do a backup of the project. Also, as you
accumulate multiple backups for a project, they will help you
keep track of them.

3.14. Removing a existing project from the workbench

There are occasions when you wish to remove a project from the Alan IDE’s
workspace. For example, maybe you are finished with developing a game, or you
may have inadvertently messed up the story line so badly that you wish to begin
anew, or you’ve decided to use an entirely different approach to the game’s code
structures, and so forth.

It is a very good idea to back up the project prior to deleting
it from the Alan IDE’s workspace.

1. Over in the Project Explorer, right-click on the name of the project you wish
to delete and select Delete from the drop-down menu to bring up the Delete
Resources dialog box.

15

Alan IDE Reference Guide

2. (Optional) Click on the box next to the Delete project contents on disk (cannot
be undone) option if you wish to delete the project from your disk (as opposed
to simply deleting its name from the Project Explorer list).

3. Click the OK button to finish the deletion.

3.15. Copying code from one file to another

When both files were created with the Alan IDE, and located within projects in the
workspace, simply open both files in the Editor, then copy-paste the code.

If one of the files was created with an external editor outside the Alan IDE, the
process is a little different. In this case, just open that file with the external editor,
and copy the code to the clipboard. Then, in the Alan IDE, open the destination
file and paste the code into it.

You may wish to create an empty file in an Alan IDE project
to serve as the destination file.

The external file must must be a plain text (.txt) file.

3.16. Importing an existing project into the workbench

There are occasions when you wish to work on an existing project you have in
storage. For example, you might want to fix bugs that were reported after you
have released a game.

1. Over in the Project Explorer, right-click somewhere in the white space outside
the list of projects to bring up the popup menu, then select Import to bring up
the Import dialog box.

The author’s two systems act differently on this step.
You may have to expland the General folder and select
Existing projects into workspace.

2. Click the Next button to advance to the Import Projects dialog box.

3. Click on the Browse button next to the Select Root Directory and navigate to
where you stored the existing project.

16

Alan IDE Reference Guide

4. Click on the existing project’s filename to select it.

You can import more than one project at the same time.

5. Click the OK button to it into the Select Root Directory field.

• Down in the Projects list, you should see the name of the existing project.

6. (Optional) If you have more than one existing project to import, click the Select
All button.

7. Leave the default selection Copy projects into workspace checked, or check
it if it is not already checked.

8. Click the Finish button.

The project should appear in the Project Explorer list.

3.17. Changing syntax highlighting colors

The default colors for highlighting the Alan source code in the IDE editor work well
for this author, but you may be wish to change them to something you like better.

1. In the IDE menu bar, click on the Edit button to bring up the drop-down menu.

2. Select Preferences to bring up the Preferences dialog box.

3. Click on Alan/Syntax Coloring over in the left hand colum to bring up the
Syntax Coloring preferences interactive display.

4. Click on the syntax element color you wish to change to bring up the color
selector.

5. Click on the desired color.

6. Click OK.

3.18. Showing line numbers

You really do not need line numbers in the IDE Editor, but they are sometimes
useful if you are troubleshooting your code with the help of an expert and wish to
point out specific lines in your code, or maybe you just want to refer to specific
lines in your code comments.

17

Alan IDE Reference Guide

1. In the IDE menu bar, click on the Edit button to bring up the dropdown menu.

2. Select Preferences to bring up the Preferences dialog box.

3. Select General/Editors/Text Editors to bring up the Text Editors dialog box.

4. Click on the Show Line numbers check box to turn on line numbers in the
Editor.

5. Click OK.

3.19. Changing the default keys

1. In the IDE menu bar, click on the Edit button to bring up the dropdown menu.

2. Select Preferences to bring up the Preferences dialog box.

3. Select General/Editors/Keys to bring up the Text Editors dialog box.

4. Change the Binding for each key as desired.

5. Click the OK button.

18

	Alan IDE Reference Guide
	1. About This Guide
	2. Installing the Alan IDE
	2.1. Verify your Java Installation
	2.2. Get the right compiler
	2.3. Install the Alan IDE
	2.4. Configure the Alan IDE
	2.5. Choose your Interpreter

	3. Alan IDE Reference Section
	3.1. Alan IDE overview
	3.2. Starting a new game
	Create a project for the new game
	Create a main file for the new game

	3.3. Finding and fixing compiler errors
	3.4. Adding an existing file to a project
	3.5. Creating a new file for a project
	3.6. Closing an open project
	3.7. Opening a closed project
	3.8. Listing the files in a project
	3.9. Opening a project file for editing
	3.10. Closing an open file
	3.11. Saving and Compiling your source code
	3.12. Testing your game
	3.13. Backing up your project
	3.14. Removing a existing project from the workbench
	3.15. Copying code from one file to another
	3.16. Importing an existing project into the workbench
	3.17. Changing syntax highlighting colors
	3.18. Showing line numbers
	3.19. Changing the default keys

